萌妹社区


Smashing fluids... the physics of flow

The physics of flow

(萌妹社区Org.com) -- Hit it hard and it will fracture like a solid... but tilt it slowly and it will flow like a fluid. This is the intriguing property of a type of 鈥榗omplex fluid鈥 which has revealed 鈥榥ew physics鈥 in research by scientists at The University of Nottingham.

The new findings will be highly useful to the manufacturing industry because the processing and dispensing of everyday products like toothpaste, cosmetics, pharmaceuticals and foodstuffs depends on an understanding of the physical properties and behaviors of these fluids.

The research just published in Nature Communications by Dr. Michael Smith from the School of 萌妹社区ics and Astronomy, with collaborators at the University of Edinburgh and Politecnico di Torino, has used new methods to try to understand the flow properties of these concentrated solutions of .

Previous research has tried to measure flow properties by pressing the fluid between two circular rotating plates, called a 鈥榮hear rheometer鈥, but this has limited applications relating to industrial manufacturing processes.

The new experiments tested various complex fluids in a different way using an 鈥榚xtensional rheometer鈥. Instead of squashing the substance, this device stretches it out between two plates at varying speeds to measure the flow properties. The method and the results gathered have revealed new physics which will have much better applications in manufacturing, for example, in the packaging and dispensing designs of many household products.

Dr. Smith said: 鈥淥ur observation of the fluid with a high speed camera revealed some intriguing effects depending on the concentration of particles and the speed at which the plates were moved. At low velocities the fluid is observed to behave like a liquid but at higher velocities and concentrations of particles the fluid can actually fracture like a solid. This happens if you dissolve a large amount of cornflour in some water, for example. The high concentration of tiny particles inside the fluid jam into one another forming clusters which lock solid if disturbed at a high enough speed.

鈥淚t is a bit like trying to move through a street crowded with an enormous number of people. If you move slowly enough you can make progress and the crowd and you 鈥榝low鈥. However, if you try and sprint down the street you will just knock into so many people that you鈥檒l never be able to move at the speed you want to and hence everything becomes grid locked.鈥

The research was able to show that whilst many features of this kind of system were independent of the geometry of the flow examined, some effects due to the exposed fluid surface were much more important than had previously been thought. In particular an effect known as 鈥榙ilatancy鈥 in which some of the particles poke through the surface of the liquid was found to play a crucial role in the jamming of the particles.

Dr. Smith added: 鈥淭he most incredible results were observed when the fluid was stretched at a velocity just below that required to form a jammed fluid. The fluid was found to form a thin filament which narrowed until it was about hundred particles in diameter. At this point the fluid was observed to recoil elastically, like a rubber band!

鈥淭his is particularly fascinating since the particles are specifically designed to behave like hard spheres with no attractive forces. Where does the elasticity come from? The liquid drains from the filament faster than the particles causing them to poke through the surface as before. The liquid surface forms a meniscus around the particles. It is this curved surface of the which the researchers believe stores the energy and results in the unusual behavior.

鈥淲e hope this research provides an important initial step in understanding how the physics in common industrial flows may differ from the carefully controlled set up found in conventional academic studies鈥

More information: The full research report can be found online at Nature Communications at:

Citation: Smashing fluids... the physics of flow (2010, November 29) retrieved 25 May 2025 from /news/2010-11-fluids-physics.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Materials scientists find better model for glass creation

0 shares

Feedback to editors