萌妹社区


Nanomaterials researchers to study self-assembly by electrical and optical fields

A University of Delaware-led research team has received a $1.3 million grant from the NSF to fund research on nanoscale directed self-assembly in electrical and optical fields. The team will be laying the groundwork for new technologies by directing tiny particles to create materials such as crystal arrays and wire-like structures that can then, in turn, be used to create even more complex materials, according to principal investigator Norman Wagner, Alvin B. and Julia O. Stiles Professor of Chemical Engineering at UD.

Co-investigators on the four-year project are UD鈥檚 Eric Kaler, Elizabeth Inez Kelley Professor of Chemical Engineering and dean of the College of Engineering, and Eric Furst, assistant professor of chemical engineering, as well as Orlin Velev, assistant professor of chemical and biomolecular engineering at North Carolina State University, and John Brady, Chevron Professor of Chemical Engineering at the California Institute of Technology.

The funding is through NSF鈥檚 Nanoscale Interdisciplinary Research Team program, which Wagner said is part of a national campaign to develop nanomaterials and nanotechnologies known as the National 萌妹社区 Initiative. 鈥淚t is not quite the Manhattan Project, but it certainly is an enormous national effort,鈥 he said.

The UD team will be looking at new ways to take nanoscale 鈥渂uilding blocks鈥 and assemble them into 鈥渉ighly structured, highly functional materials,鈥 Wagner said.

Among the potential future uses of the technology are tiny and highly specialized sensors with applications in health care and security and advances in photonics, or the generation and control of light to carry information. 鈥淥ne grant challenge for the future is photonics and the ability to make an optical computer that is driven by light rather than by electricity,鈥 Wagner said. 鈥淭hat will lead to a quantum leap in the power of the computer.鈥

Wagner said that in working with nanoscale particles, scientists must put 鈥渂illions and billions and billions of pieces together,鈥 and because the materials are so small, they must develop new methods for the manufacture of nanomaterials. 鈥淲e must come up with a new science, really, as we learn how to manipulate and control the particles,鈥 he said.

The only way to create nanomaterials, Wagner said, is through self-assembly, in which the materials essentially build themselves. 鈥淣ature works through self-assembly,鈥 he said, adding, 鈥淏iological systems are wonderful examples of self-assembly, from seashells, which grow through the use of nanoparticles and polymer secretions, to human beings.鈥

Wagner said that through self-assembly, nanoparticles form structures that can then perform 鈥渕ore complex tasks and create even more complicated structures, like you and I.鈥

Engineers are interested in conducting self-assembly much as nature does but without the limitations--natural self-assembly is generally slow and the number of materials limited--and with the ability to manipulate and control the processes. 鈥淲e recognize the power of self-assembly but we want to do it on our own terms, controlling it, directing it, speeding it up,鈥 Wagner said.

The team will be considering how to undertake nanoscale self-assembly through the use of electrical and optical fields. In electrical fields, scientists can move and assemble nanoparticles into functional materials, sometimes driving them to electrodes to create crystal arrays that can be made functional as displays or sensors.

Also, the team will be studying the use of optical fields in the creation of nanostructures through human manipulation. UD鈥檚 Furst has developed 鈥渓aser tweezers鈥 that can physically grab onto and direct nanoparticles.

鈥淏y combining laser tweezers in optical fields and directed self-assembly in electrical fields, we believe we will be able to create new materials,鈥 Wagner said.

Wagner said the team would be conducting basic research to 鈥渦nderstand the mechanisms and develop a new technology.鈥

鈥淭his will be an enabling technology that we and others will use to make things in the future,鈥 he added.

The NSF is interested in using the NIRT grants to stimulate multidisciplinary and multi-institutional research, Wagner said. Velev is a former UD researcher who now has a well-recognized research program at North Carolina State, and Brady is a renowned chemical engineer.

The grant will provide research opportunities for three doctoral students at UD and one each at North Carolina State and Cal Tech, and for undergraduates at the participating institutions. Students and faculty will work together at all three institutions, as well as with industrial partners who are interested in developing technologies from the basic research.

Source: University of Delaware

Citation: Nanomaterials researchers to study self-assembly by electrical and optical fields (2005, November 22) retrieved 29 May 2025 from /news/2005-11-nanomaterials-self-assembly-electrical-optical-fields.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

Researchers develop new method for delivering RNA and drugs into cells

0 shares

Feedback to editors