萌妹社区


The best way to find planet nine might be hundreds of tiny telescopes

The best way to find planet nine might be hundreds of tiny telescopes
Artist's impression of Planet Nine as an ice giant eclipsing the central Milky Way, with a star-like sun in the distance. Neptune's orbit is shown as a small ellipse around the sun. The sky view and appearance are based on the conjectures of its co-proposer, Mike Brown. Credit: arXiv (2024). DOI: 10.48550/arxiv.2410.16348

Ever since William Herschel discovered Uranus in 1781, astronomers have been eager to find new planets on the outer edge of the solar system. But after the discovery of Neptune in 1846, we've found no other large planets. Sure, we discovered Pluto and other dwarf planets beyond it, but nothing Earth-sized or larger. If there is some planet nine, or "Planet X" lurking out there, we have yet to find it.

But there is some tentative evidence for it. As we have found more Pluto-like bodies known as Trans-Neptunian Objects (TNOs) and even more distant bodies known as Kuiper Belt Objects (KBOs), we've noticed that there appears to be an odd bit of orbital clustering among them.

The orientation of their orbits isn't as randomly distributed as we'd expect, which could be caused by the small gravitational tugs of a super-Earth at the edge of the solar system. If we assume that is the solution to the orbital bias, then there could be a five-Earth-mass planet orbiting 10 times farther from the sun than Neptune.

Astronomers have searched for the planet but have found nothing. This has led some to speculate that Planet X might be a primordial black hole, while more skeptical minds argue it must not exist. The evidence just isn't that strong, and there are other possible explanations for the clustering. So a posted to the arXiv preprint server argues for a new way to gather evidence of Planet X, and it's remarkably clever.

The idea is based on a phenomenon known as occultation. This is when an asteroid or planetary body passes in front of a star. By observing the star as the object occults it, astronomers can measure things such as the orbit and shape of the body. Through an occultation, we discovered that the asteroid Chariklo has a ring system. Amateur astronomers have used occultation events to map the shapes of small asteroids.

The best way to find planet nine might be hundreds of tiny telescopes
Ocultations different vantage points reveals the shape of an asteroid. Credit: IOTA

The authors propose building 200 40-cm telescopes spaced 5 kilometers apart to create an array 1,000 km wide. Since each telescope would have a slightly different vantage point, occultations would be seen differently by different telescopes, allowing astronomers to map the and size of Trans-Neptunian Objects.

They estimate that over the course of a 10-year study they could detect about 1,800 new TNOs. Based on simulations of TNO orbits and clustering, the authors show that such a system should find clear evidence of any 5 Earth-mass body within 800 AU of the sun. In other words, if Planet X is out there, this study could prove it.

The whole array would only cost about $15 million U.S. dollars, which is surprisingly cheap for such a project. Even if the study failed to find Planet X, it would add to our understanding of the distant solar system and also allow us to study how sunlight can shift the orbits of small solar system bodies.

More information: Daniel C. H. Gomes et al, An automated occultation network for gravitational mapping of the trans-neptunian solar system, arXiv (2024).

Journal information: arXiv

Provided by Universe Today

Citation: The best way to find planet nine might be hundreds of tiny telescopes (2024, November 18) retrieved 22 May 2025 from /news/2024-11-planet-hundreds-tiny-telescopes.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

If Planet 9 is out there, here's where to look

86 shares

Feedback to editors