萌妹社区


The art of shutting down a nuclear plant

The art of shutting down a nuclear plant

Ga毛tan Girardin, researcher in nuclear engineering, gives us the key to understanding nuclear reactor safety. While the disaster at Fukushima is at the center of our conversation, the recent and minor incident at the M眉hleberg plant (Switzerland) is also discussed.

February the 8th at 1:45 p.m., the nuclear reactor at M眉hleberg automatically stopped upon detection of an anomaly. Although not frequent, such events are not exceptional. Ga毛tan Girardin, a researcher in nuclear engineering and head of the Crocus reactor at EPFL, will participate on February 22nd in 鈥淪cience! On tourne鈥濃攁 series of public dialogues about science. The first lecture is entitled "One Year Later: has Fukushima really changed the game?" He provides us with some techniques to better understand the operation of nuclear plants and, more particularly, the shutdown procedure that was made impossible in Japan.

After Fukushima, people have realized that shutting down a nuclear reactor is not as simple as turning out the lights. Things are a little more complex.
Ga毛tan Girardin: That is correct; we need to stop a chain reaction. A is a tank filled with metal bars about the diameter of a pen that contain uranium. This is the nuclear fuel itself. As it decays, the uranium nucleus releases neutrons, which will collide with its neighbors, and so on ... The heat produced by the fission reactions will be used to produce steam, which then turn an electric turbine. This is common to all power plants. To stop the reactor, that is to say to stop the chain reaction, we must act on the production of neutrons, or capture them.

Specifically, how does one proceed?
Between the fuel rods, or sometimes in place of some of them, we introduce bars called "control rods". In M眉hleberg, for example, there are ceramic rods inside metal sheaths, which have the property of absorbing neutrons. In other reactors, the system may vary. But the principle remains the same whatever the technology.

In Fukushima, the reaction had yet been properly stopped... 
And this is not sufficient. We know that once the stopped, a reactor still produces about 7% of its operating energy as heat. This may seem trivial, but if you consider the power of a nuclear facility, and the fact that the whole is confined in a small space, there is the potential to seriously damage the materials. We must understand one thing: the heat does not magically disappear. Just as when you turn off an electric stovetop, its temperature does not drop instantly to 20 degrees. We therefore use a water circuit to cool the reactor, especially after it has been stopped. If this is not done correctly, there is a danger that the materials melt: first the fuel rods, then the tank and, finally the concrete containment unit. That is precisely what happened at Fukushima. Following the earthquake, the reactors were shut down correctly, but the tsunami flooded the cooling system and this led to a core meltdown.

At M眉hleberg, it was a simple routine check which caused the shutdown.
It appears that the technicians on duty conducted a water test in the wrong place, compared to what was originally planned. I do not know the details of this incident. Maybe this caused a slight change in flow or pressure in one part of the water cooling supply circuits. Whatever the reason, an anomaly was detected by the monitoring system and the reactor was automatically switched off. This is a normal procedure in such circumstances.

Under what circumstances are these systems programmed to shut down?
A reactor is equipped with many security systems that monitor the vital parts of the machine. There are sensitive points, such as the fuel temperature or the flow of water in the cooling circuit. Any damage, however minor, will be detected and analyzed by security systems, and cause a reactor to shut down. It is absolutely essential.

This is not the first time a reactor is shut down automatically. The same phenomenon is quite common.
We should not exaggerate either. The last time in M眉hleberg was in 2007鈥攖his does not happen every day. In 2011, none of our five reactors were automatically interrupted by the operating system. What strikes me is that these cases are perceived as a problem. In my opinion, it is reassuring that our plants are conceived so that the reactor shuts down by itself at the detection of the slightest abnormality. This shows that safety is never compromised.

Provided by Ecole Polytechnique Federale de Lausanne

Citation: The art of shutting down a nuclear plant (2012, February 13) retrieved 31 May 2025 from /news/2012-02-art-nuclear.html
This document is subject to copyright. Apart from any fair dealing for the purpose of private study or research, no part may be reproduced without the written permission. The content is provided for information purposes only.

Explore further

No uncontrolled reaction at Fukushima: operator

0 shares

Feedback to editors